Lucija Jukić, Jurij Svete*, and Branko Stanovnik*<br>Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia Received December 15, 2000


#### Abstract

Alkyl 2-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-dimethylaminopropenoates 3 and $\mathbf{4}$ were transformed with $C$-and $N$-nucleophiles into $\beta$-heteroaryl- $\alpha, \beta$-didehydro- $\alpha$-amino acid derivatives 13-16, substituted 3 -amino- 4 H -quinolizin-4-one 17, $2 \mathrm{H}, 5 \mathrm{H}$-benzo[b]pyran-2,5-dione 18 and $\mathbf{1 9}, 2 \mathrm{H}, 5 \mathrm{H}$ -pyrano[4,3-b]pyran-2,5-dione 20, $2 H, 5 H$-pyrano[3,2-c]benzo[b]pyran-2,5-dione 21, $2 H$-1-benzopyran-2one $\mathbf{2 2}$ and 24, pyrido[1,2- $a$ ]pyrimidin-4-one 31-34 and $\mathbf{3 9}$ derivatives, and $N$-heteroaryl- 1 H -imidazole-4carboxylates $\mathbf{3 7}$ and $\mathbf{3 8}$.


J. Heterocyclic Chem., 38, 869 (2001).

Quinolizines, pyridopyrimidines, benzopyrans, pyranopyrans and related fused systems are the basic structures of many naturally occurring alkaloids and their synthetic derivatives exhibiting various biological activity [1-5].

Recently, alkyl 2-substituted 3-(dimethylamino)propenoates and their cyclic analogs have been shown to be versatile and efficient reagents for the preparation of various heterocyclic systems [6], including some natural products, such as aplysinopsins and analogs [7]. This methodology has opened also an easy access to substituted 4 H -quino-lizin-4-ones, pyridopyrimidines and other heterocyclic systems with an amino group in 3 position of the newly formed heterocyclic system [8-10]. The substituents attached at the 2,2-disubstituted ethenyl group of the substituted amino group are ester groups or a combinations of an ester and an acyl, two acyl, an ester and an amino, an ester and a cyano, two cyano, or an ester and a phenyl group [6].

In this communication we report the transformations of 2-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3dimethylaminopropenoates $\mathbf{3}$ and 4, prepared from ethyl 2pyridinylacetate (1) in two steps (Scheme 1) [11], with $C$ and $N$-nucleophiles in order to introduce a heteroaryl substituted ethenylamino group into the newly formed heterocyclic system.
carbonyl-2-(2-pyridinyl)ethenyl]amino-3-(4-hydroxy-2,6-dioxo-5-pyridinyl)propenoates $\mathbf{1 3 - 1 5}$ in $65-94 \%$ yield, and with indole (7) at room temperature for 6 days the corresponding 3-(3-indolyl)propenoate 16 in low yield. By treatment of $\mathbf{3}$ or $\mathbf{4}$ with other $C$-nucleophiles in acetic acid at room temperature, $80-100{ }^{\circ} \mathrm{C}$ or by refluxing for several hours the cyclic products, such as fused pyranones, pyridinones, pyrimidinones, and $N$-heteroaryl substituted imidazoles were obtained. In this respect, $\mathbf{3}$ and/or $\mathbf{4}$ were transformed with 2-pyridinylacetonitrile (8) into substituted amino- 4 H -quinolizin-4-one 17, cyclohexane-1,3-dione (9) and its 5,5-dimethyl derivative (10) into 5,6,7,8-tetrahydro$2 \mathrm{H}, 5 \mathrm{H}$-benzo[b]pyran-2,5-diones $\mathbf{1 8}$ and 19, 4-hydroxy-6-methyl-2H-pyran-2-one (11) into $2 H, 5 H$-pyrano[4,3-b]-pyran-2,5-dione 20, 4-hydroxy-2H-benzo[b]pyran-2-one (12) into $2 H, 5 H$-pyrano[3,2-c]benzo[b]pyran-2,5-dione (21). Compound 18 gave by treatment with hydrazine in refluxing ethanol the corresponding 5-hydrazono derivative 22, and 1-aminoquinolin- $2(1 H)$-one derivative 23, while from 19 only 5-hydrazono derivative 24 was formed. (Scheme 2).

N -Nucleophiles react in two different manners: with sterically unhindered heteroarylamines the reactions proceed according to path A and the fused pyrimidin-4-ones are formed, while with sterically hindered heteroarylamines the

Scheme 1


Alkyl (Z)-2-[(E)-2-ethoxycarbonyl-2-(2-pyridinyl)-ethenyl]amino-3-dimethylaminoprope-noates 3 and 4 were treated with barbituric acid (5) or its 1,3-dimethyl derivative (6) in acetic acid at room temperature for 3-5 hours or at 80 ${ }^{\circ} \mathrm{C}$ for $0.5-2.5$ hours to form the corresponding 2-[2-ethoxy-
reactions proceed according to path B resulting in the formation of 1-heteroaryl-1 H -imidazole-4-carboxylates. This phenomenon has been observed earlier in reactions with some other 2-[2,2-disubstituted ethenyl]amino-3-dimethylaminopropenoates [12]. Thus, compounds $\mathbf{3}$ and $\mathbf{4}$ react

Scheme 2







$18\left(\mathrm{R}_{1}=\mathrm{H}\right)$
$19\left(\mathrm{R}_{1}=\mathrm{Me}\right)$




with $N$-nucleophiles, such as $\alpha$-heteroarylamines 2-aminopyridine (27) and its derivatives 28-30, to give 4H-pyrido[1,2-a]pyrimidin-4-one derivatives 31-34, while compound 3 reacts with 2-amino-4-chlorobenzothiazole (35) and 3-amino-5-methylisoxazole (36) to form the corresponding N -heteroaryl- 1 H -imidazole-4-carboxylates $\mathbf{3 7}$ and 38. Deprotection of compound 31 by heating with hydrazine in boiling ethanol produced the
parent 3-amino-4H-pyrido[1,2-a]pyrimidin-4-one (39) [13]. (Scheme 3).

## Structure Determination.

The structures of the compounds were determined on the basis of their mass spectra, elemental analyses for $C, H$, and $N$ and ${ }^{1} \mathrm{H} n m r$ spectra. The chemical shifts for protons attached to the cyclic structure are in agreement with the

data reported in the literature for other derivatives of these systems [6]. The proton attached at the newly fused pyridine ring in compound $\mathbf{1 7}$ and pyrimidine ring in compounds 3134 and 37 appears in ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectra in all cases as a sharp singlet at $\delta=7.68 \mathrm{ppm}$ and $\delta=8.33-8.38 \mathrm{ppm}$, respectively indicating that this proton is attached at the 2-position. In alternative structures, 2 -ones, the proton at 4 -position should have appeared as doublet due to the long-range coupling to proton at 9 -position characteristic for pyrido[1,2-a]pyrimidin-2-ones [14]. Furthermore, the transformation of the corresponding 3 -diazonium salts into alkyl 1-(substituted pyridin-2-yl)-1H-1,2,3-triazole-4-carboxylates, supported by an X-ray analyses, is an additional proof, which speaks in favor of 4 -one structures [15]. The protons attached to the side chain show the following characteristics. The CHNH appear as doublets in the range of $\delta=8.27-8.56$ ppm and CHNH as doublets in the range of $\delta=12.96-13.54$ ppm with the coupling constants $\mathrm{J}_{\mathrm{CH}-\mathrm{NH}}=11.4-12.8 \mathrm{~Hz}$. From the chemical shifts one can conclude that the orientation around the $\mathrm{C}=\mathrm{C}$ bond is trans and from the magnitude of coupling constants that the orientation around the CHNH is trans (antiperiplanar). (Figure 1).


Figure 1

## EXPERIMENTAL

Melting points were taken on a Kofler micro hot stage. The ${ }^{1} \mathrm{H}$ nmr spectra were obtained on a Bruker Avance DPX 300 (300 MHz ) spectrometer in such solvent as dimethyl sulfoxide- $\mathrm{d}_{6}$ and deuteriochloroform with tetramethylsilane as internal standard, MS spectra on an AutoSpecQ spectrometer, IR spectra on a Perkin-Elmer 1310 infrared spectrophotometer and elemental analyses for C, H, and N on a Perkin-Elmer CHN Analyser 2400. Experimental and analytical data are given in Tables 1 and 2.
Ethyl 3-Dimethylamino-2-(2-pyridinyl)propenoate (2) was Prepared According to the Procedure Described in the Literature [16].

Methyl and ethyl (Z)-2-[(E)-2-ethoxycarbonyl-2-(2-pyridinyl)-ethenyl]amino-3-dimethylaminopro-penoate 3 and 4, methyl 2-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-(4-methyl-2pyridinyl)aminopropenoate (25) and methyl 2-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-(5-chloro-2-pyri-dinyl)aminopropenoate (26) were prepared according to the procedures described in the literature [11].

Preparation of $\beta$-Heteroaryl- $\alpha, \beta$-didehydro- $\alpha$-amino Acid Derivatives 13-16.

## Method A.

To compounds $\mathbf{3}$ or $\mathbf{4}$ ( 0.5 mmole) the corresponding $C$-nucleophilic compounds 5-7 ( 0.5 mmole ) and acetic acid ( 2 ml ) were added and stirred at room temperature from 3 hours to 6 days. The formed precipitate was collected by filtration and washed with ethanol. The exception is the isolation of product 16, where the volatile compounds were evaporated in vacuo, ethanol (3 ml) was added and the precipitate was collected by filtration.

## Method B.

To compound $\mathbf{3}$ ( 0.5 mmole ) the corresponding $C$-nucleophilic compounds 5, $6(0.5 \mathrm{mmole})$ and acetic acid ( 2 ml ) were added and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ from 30 minutes to 2.5 hours. The formed precipitate was collected by filtration and washed with ethanol.

Methyl 2-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-(4-hydroxy-2,6-dioxo-5-pyrimidinyl)-propenoate (13).

This compound was prepared from compound 3 ( 0.5 mmole, 160 mg ) and barbituric acid (5) ( $0.5 \mathrm{mmole}, 64 \mathrm{mg}$ ) by method A, 3 hours and by method B, 30 minutes.

Ethyl 2-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-(4-hydroxy-2,6-dioxo-5-pyrimidinyl)-propenoate (14).

This compound was prepared from compound $\mathbf{4}(0.5$ mmole, 167 $\mathrm{mg})$ and barbituric acid (5) ( 0.5 mmole, 64 mg ) by method A, 5 hours.
Methyl 2-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-(4-hydroxy-1,3-dimethyl-2,6-dioxo-5-pyrimidinyl)propenoate (15).

This compound was prepared from compound $\mathbf{3}$ ( 0.5 mmole, 160 mg ) and 1,3 -dimethylbarbituric acid ( $\mathbf{6}$ ) ( $0.5 \mathrm{mmole}, 78 \mathrm{mg}$ ) by method A, 3 hours and by method B, 2.5 hours.

Table 1
Experimental and Analytical Data

| Compound | Yield (\%) | $\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$ | Molecular formula Analyses | $\begin{gathered} \mathrm{MS} \\ \mathrm{M}+(\mathrm{m} / \mathrm{z}) \end{gathered}$ | IR (cm-1) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | $\begin{aligned} & 65[\mathrm{a}] \\ & 94[\mathrm{~b}] \end{aligned}$ | 239-242 <br> from ethanol | $\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{7} \\ \text { Calcd: C, } 52.56 ; \mathrm{H}, 4.65 ; \mathrm{N}, 13.62[\mathrm{~g}] \\ \text { Found: C, } 52.15 ; \mathrm{H}, 4.60 ; \mathrm{N}, 13.21 \end{gathered}$ | 403 MH | 3420 (OH) |
| 14 | 93 | $224-227$ <br> from ether | $\begin{aligned} & \qquad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7} \\ & \text { Calcd: C, } 53.65 ; \mathrm{H}, 4.98 ; \mathrm{N}, 13.17[\mathrm{~g}] \\ & \text { Found: C, } 53.91 ; \mathrm{H}, 5.33 ; \mathrm{N}, 12.91 \end{aligned}$ | 417 MH | 3420 (OH) |
| 15 | $\begin{aligned} & 89[\mathrm{a}] \\ & 69[\mathrm{~b}] \end{aligned}$ | 227-229 from ethanol/toluene | $\begin{aligned} & \quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7} \\ & \text { Calcd: } \mathrm{C}, 55.81 ; \mathrm{H}, 5.15 ; \mathrm{N}, 13.02 \\ & \text { Found:C, } 55.95 ; \mathrm{H}, 4.92 ; \mathrm{N}, 12.82 \end{aligned}$ | $\begin{gathered} 430 \\ 431(\mathrm{MH}) \end{gathered}$ | 3440 (OH) |
| 16 | 6 | 181-182 <br> from ethanol | $\begin{aligned} & \qquad \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \\ & \text { Calcd: C, } 67.51 ; \mathrm{H}, 5.41 ; \mathrm{N}, 10.73 \\ & \text { Found:C, } 67.44 ; \mathrm{H}, 5.75 ; \mathrm{N}, 10.66 \end{aligned}$ |  |  |
| 17 | $\begin{aligned} & 26[\mathrm{a}] \\ & 53[\mathrm{~b}] \end{aligned}$ | $265-268$ <br> from ethanol | $\begin{aligned} & \qquad \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \\ & \text { Calcd: C, } 66.66 ; \mathrm{H}, 4.48 ; \mathrm{N}, 15.55 \\ & \text { Found:C, } 66.96 ; \mathrm{H}, 4.25 ; \mathrm{N}, 15.45 \end{aligned}$ |  | 2210 (CN) |
| 18 | $\begin{gathered} 30[\mathrm{a}] \\ 7[\mathrm{~b}] \\ 7[\mathrm{~d}] \end{gathered}$ | $176-178$ <br> from ethanol | $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ Calcd: C, $64.40 ; \mathrm{H}, 5.12 ; \mathrm{N}, 7.91$ Found:C, $64.53 ; \mathrm{H}, 5.33 ; \mathrm{N}, 7.95$ |  |  |
| 19 | $\begin{gathered} 56[\mathrm{a}] \\ 44[\mathrm{~b}] \\ 6[\mathrm{~d}] \end{gathered}$ | $146-151$ <br> from ethanol | $\begin{aligned} & \quad \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \\ & \text { Calcd: } \mathrm{C}, 65.96 ; \mathrm{H}, 5.80 ; \mathrm{N}, 7.33 \\ & \text { Found:C, } 66.22 ; \mathrm{H}, 5.84 ; \mathrm{N}, 7.39 \end{aligned}$ |  |  |
| 20 | $\begin{gathered} 16[\mathrm{~b}] \\ 9[\mathrm{~d}] \end{gathered}$ | 225-228 from ethanol/toluene | $\begin{aligned} & \quad \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \\ & \text { Calcd: } \mathrm{C}, 61.95 ; \mathrm{H}, 4.38 ; \mathrm{N}, 7.61 \\ & \text { Found:C, } 62.03 ; \mathrm{H}, 4.43 ; \mathrm{N}, 7.77 \end{aligned}$ |  |  |
| 21 | $\begin{aligned} & 30[\mathrm{~b}] \\ & 22[\mathrm{~d}] \end{aligned}$ | 235-240 from ethanol/toluene | $\begin{aligned} & \quad \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6} \\ & \text { Calcd: } \mathrm{C}, 65.35 ; \mathrm{H}, 3.99 ; \mathrm{N}, 6.93 \\ & \text { Found:C, } 65.68 ; \mathrm{H}, 4.04 ; \mathrm{N}, 6.97 \end{aligned}$ |  |  |
| 22 | 82 | 212-215 <br> from ethanol | $\begin{aligned} & \qquad \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \\ & \text { Calcd: C, } 61.95 ; \mathrm{H}, 5.47 ; \mathrm{N}, 15.21 \\ & \text { Found:C, } 62.09 ; \mathrm{H}, 5.55 ; \mathrm{N}, 15.23 \end{aligned}$ |  |  |
| 23 | 5 | $165-172$ <br> from ethanol | $\begin{gathered} \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{3} \\ \text { Calcd: C, } 58.30 ; \mathrm{H}, 5.92 ; \mathrm{N}, 21.45[\mathrm{~g}] \\ \text { Found: C, } 58.27 ; \mathrm{H}, 5.58 ; \mathrm{N}, 21.73 \end{gathered}$ | 382 |  |
| 24 | 37 | 211-213 <br> from ethanol | $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$ Calcd: C, $63.62 ; \mathrm{H}, 6.10 ; \mathrm{N}, 14.13$ Found:C, $63.69 ; \mathrm{H}, 6.02 ; \mathrm{N}, 14.00$ | 396 HRMS: Calcd: 396.179756 Found: 396.180550 |  |
| 31 | 30 | $149-156$ from ethanol/toluene | $\begin{gathered} \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3} \\ \text { Calcd: C, } 63.43 ; \mathrm{H}, 4.88 ; \mathrm{N}, 16.44[\mathrm{f}] \\ \text { Found: C, 63.46; H, 5.07; N, 15.61 } \end{gathered}$ | $\begin{gathered} 336 \\ \text { HRMS: } \\ \text { Calcd: } 336.122241 \\ \text { Found: } 336.123040 \end{gathered}$ |  |
| 32 | $\begin{aligned} & 55[\mathrm{a}] \\ & 21[\mathrm{e}] \\ & 15[\mathrm{~d}] \end{aligned}$ | 173-179 from ethanol/toluene | $\begin{aligned} & \quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \\ & \text { Calcd: C, } 65.13 ; \mathrm{H}, 5.18 ; \mathrm{N}, 15.99 \\ & \text { Found:C, } 64.83 ; \mathrm{H}, 5.38 ; \mathrm{N}, 15.76 \end{aligned}$ |  |  |
| 33 | $\begin{aligned} & 17[\mathrm{~b}] \\ & 13[\mathrm{~d}] \end{aligned}$ | 208-212 from ethanol/toluene | $\begin{aligned} & \qquad \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \\ & \text { Calcd: } \mathrm{C}, 61.36 ; \mathrm{H}, 4.58 ; \mathrm{N}, 15.90 \\ & \text { Found:C, } 61.32 ; \mathrm{H}, 4.68 ; \mathrm{N}, 15.94 \end{aligned}$ |  |  |
| 34 | $\begin{aligned} & 26[\mathrm{a}] \\ & 18[\mathrm{c}] \\ & 12[\mathrm{~d}] \end{aligned}$ | 201-203 from ethano/toluene | $\begin{aligned} & \qquad \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{3} \\ & \text { Calcd: } \mathrm{C}, 58.31 ; \mathrm{H}, 4.08 ; \mathrm{N}, 15.11 \\ & \text { Found:C, } 58.15 ; \mathrm{H}, 4.08 ; \mathrm{N}, 15.08 \end{aligned}$ |  |  |
| 37 | 67 | $\begin{aligned} & 185-186 \\ & \text { from ethanol } \end{aligned}$ | $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}$ Calcd: $\mathrm{C}, 49.07 ; \mathrm{H}, 2.75 ; \mathrm{N}, 14.31$ Found:C, $49.07 ; \mathrm{H}, 2.72 ; \mathrm{N}, 14.32$ | 293 |  |
| 38 | 37 | 197-198 <br> from ethanol | $\begin{gathered} \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \\ \text { Calcd: C, } 52.17 ; \mathrm{H}, 4.38 ; \mathrm{N}, 20.28 \\ \text { Found:C, } 52.35 ; \mathrm{H}, 4.47 ; \mathrm{N}, 19.98 \end{gathered}$ |  |  |

[a] By method A. [b] By method B. [c] By method C, from compound 5. [d] By method C, from compound 6. [e] From compound 5. [f] Calcd. for compound $\mathbf{3 3}+0.25 \mathrm{H}_{2} \mathrm{O}$. [g] Calcd. for compound $\mathbf{1 3}, \mathbf{1 4}$, and $\mathbf{3 3}+0.5 \mathrm{H}_{2} \mathrm{O}$.

Table 2
${ }^{1} \mathrm{H}$ NMR Data

| Compound | $300 \mathrm{MHz}$ <br> Solvent | $\delta$ (tetramethylsilane) |
| :---: | :---: | :---: |
| 13 | DMSO-d ${ }_{6}$ | $1.29\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.56\left(2 \mathrm{H}\right.$, br.s, $\left.\mathrm{H}_{5}, \mathrm{H}_{4}\right), 7.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}\right)$, 8.27-8.30 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}$ ) , $8.35(1 \mathrm{H}$, br.s, CH$), 8.55(1 \mathrm{H}$, br.s, CHNH$), 9.96(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{H}), 12.54(1 \mathrm{H}$, br.s, CHNH), $14.32(1 \mathrm{H}$, br.s, OH$), \mathrm{J}_{\mathrm{CH} 2 \mathrm{CH} 3}=6.8 \mathrm{~Hz}$. |
| 14 | DMSO-d ${ }_{6}$ | 1.26, $1.29\left(6 \mathrm{H}, 2 \mathrm{xt}, 2 \mathrm{x} \mathrm{COOCH} \mathrm{CH}_{3}\right), 4.21\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.31\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.47-7.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right.$, $\left.\mathrm{H}_{4}\right), 7.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}\right), 8.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{6}\right), 8.32(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.54(1 \mathrm{H}$, br.s, CHNH$), 9.90(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{NH}), 11.96(1 \mathrm{H}$, br.s, CHNH), $\mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=8.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=7.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=6.9 \mathrm{~Hz}$. OH exchanged. |
| 15 | DMSO-d ${ }_{6}$ | $1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.11(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{Me}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.22\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.40-7.80(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{4}, \mathrm{H}_{5}\right), 7.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{3}\right), 8.20-8.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}, \mathrm{CH}, \mathrm{CHNH}\right), 12.42(1 \mathrm{H}$, br.s, CHNH$), 14.64(1 \mathrm{H}$, br.s, OH$), \mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=$ $8,7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
|  | $\mathrm{CDCl}_{3}$ | $1.45\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.35(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{Me}), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.58\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.11(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{5}\right), 7.69\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}\right), 7.92\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}\right), 7.95\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}\right), 8.16(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.88(1 \mathrm{H}$, br.s, CHNH$), 14.64(1 \mathrm{H}$, br.s, OH ), $\mathrm{J}_{\mathrm{H} 3 \mathrm{H} 4}=9.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 5}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3 \mathrm{H} 6}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=1.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=6.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=$ 7.1 Hz . OH exchanged. |
| 16 | DMSO-d ${ }_{6}$ | $1.19\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.13\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.14\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{5}\right), 7.19(1 \mathrm{H}$, ddd, $\left.\mathrm{H}_{5}{ }^{\prime}\right), 7.23\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}\right), 7.49\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{7}\right), 7.55(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.76\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}\right), 7.82\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}\right), 8.11(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{H}_{2}\right), 8.24\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.37(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H \mathrm{NH}), 8.45\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 11.91\left(1 \mathrm{H}\right.$, br.s, $\left.\mathrm{H}_{1}\right), 12.27(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=$ $8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=$ $1.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 7}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=7.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 7}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 7}=8.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 1 \mathrm{H} 2}=2.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
|  | $\mathrm{CDCl}_{3}$ | $\left.1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 4.23\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.99\left(1 \mathrm{H}, \text { ddd, } \mathrm{H}_{5}\right)^{\prime}\right), 7.24\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right)$, $7.29\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}\right), 7.42\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{7}\right), 7.63(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.66\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.82\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}\right), 8.09\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right), 8.33$ <br> $\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 8.37\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.40(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H \mathrm{NH}), 8.59\left(1 \mathrm{H}\right.$, br.s, $\left.\mathrm{H}_{1}\right), 12.46(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=8.4 \mathrm{~Hz}$, <br> $\mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 5}=7.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 6}=1.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 7}=$ $1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 6}=7.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5 \mathrm{H} 7}=1.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 7}=8.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 1 \mathrm{H} 2}=2.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 17 | $\mathrm{CDCl}_{3}$ | $1.43\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.36\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.11\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.15\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{7}\right), 7.48\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{8}\right), 7.68$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right), 7.70\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 7.93\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{9}\right), 8.32\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.42(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.70\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 9.11$ <br> $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}\right), 13.41(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=1.9 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 7}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 8}=1.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 9}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 8}=6.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 9}=1.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8 \mathrm{H} 9}=9.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{CHNH}}=12.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 18 | $\mathrm{CDCl}_{3}$ | $1.40\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.14-2.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.57-2.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2}\right), 4.35(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.10\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{5}{ }^{\prime}\right), 7.36\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 7.70\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 8.28\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.63$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6^{\prime}}{ }^{\prime}\right), 13.13(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 2}=6.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 19 | $\mathrm{CDCl}_{3}$ | $1.16(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} 7-\mathrm{Me}), 1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 2.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.34\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.10$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.35\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 7.69\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 8.28\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.63\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 13.14$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} 4^{\prime}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{CHNH}}=11.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 20 | $\mathrm{CDCl}_{3}$ | $\left.1.41\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.36(3 \mathrm{H}, \mathrm{d}, 7-\mathrm{Me}), 4.36\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.23\left(1 \mathrm{H}, \mathrm{qd}, \mathrm{H}_{8}\right), 7.12\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right)^{\prime}\right), 7.37$ $\left(1 \mathrm{H}\right.$, br.s, $\left.\mathrm{H}_{4}\right), 7.71\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.31\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.63\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 13.39(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH})$, $\mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4 \mathrm{H} 8}=0.7 \mathrm{~Hz}$, $\mathrm{J}_{7-\mathrm{MeH} 8}=0.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=11.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 21 | $\mathrm{CDCl}_{3}$ | $\left.1.42\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.38\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.15\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right)^{\prime}\right), 7.41\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{7}\right), 7.42\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{9}\right), 7.49$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 7.62\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{8}\right), 7.73\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 8.04\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{10}\right), 8.31(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.32\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}\right), 8.66$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6^{\prime}}\right), 13.54(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 5^{\prime} \mathrm{H}^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 8}=8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 9}=1.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8 \mathrm{H} 9}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8 \mathrm{H} 10}=1.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 9 \mathrm{H} 10}=8.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=11.8 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 22 | $\mathrm{CDCl}_{3}$ | $1.40\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.14-2.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.55-2.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.13-3.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.35(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 5.12\left(2 \mathrm{H}, \mathrm{s},=\mathrm{N}-\mathrm{NH}_{2}\right), 7.08\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.68\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.70\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 8.29\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.42$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.64\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6^{\prime}}\right), 13.05(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=$ $7.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H}^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$. |
| 23 | $\mathrm{CDCl}_{3}$ | $1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 1.96-2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.41-2.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.96-3.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.33(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 5.11\left(2 \mathrm{H}, \mathrm{s},=\mathrm{N}-\mathrm{NH}_{2}\right), 5.26\left(2 \mathrm{H}\right.$, br.s, $\left.\mathrm{NH}_{2}\right), 7.05\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{5}{ }^{\prime}\right), 7.66\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{4}{ }^{\prime}\right), 7.83\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 8.25$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.46(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H \mathrm{NH}), 8.66\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 12.96(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=$ $0.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 5^{\prime}}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.2 \mathrm{~Hz}$. |
| 24 | $\mathrm{CDCl}_{3}$ | $1.14\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.34\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 5.13$ $\left(2 \mathrm{H}, \mathrm{s},=\mathrm{N}-\mathrm{NH}_{2}\right), 7.08\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.68\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 7.69\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{4}\right), 8.30\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.42(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.64$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6^{\prime}}\right), 13.06(1 \mathrm{H}$, br.s, CHNH$), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=1.9 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 31 | $\mathrm{CDCl}_{3}$ | $1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.96\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{7}\right), 7.07\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.42\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{9}\right), 7.68$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 8.33\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.38\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right), 8.56(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{8}\right), 8.66\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 8.91(1 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{H}_{6}\right), 13.12(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH} H), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 5^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=$ $5.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 7}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 9}=0.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 8}=1.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 9}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8 \mathrm{H} 9}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.7 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |


| Compound | 300 MHz <br> Solvent | $\delta$ (tetramethylsilane) |
| :---: | :---: | :---: |
| 32 | $\mathrm{CDCl}_{3}$ | $1.39\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.47(3 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, 8-\mathrm{Me}), 4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.96\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{7}\right), 7.07\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}{ }^{\prime}\right), 7.42$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{9}\right), 7.68\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 8.33\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.38\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right), 8.56(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.66\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 8.91(1 \mathrm{H}$, d, $\mathrm{H}_{6}$ ), $13.12(1 \mathrm{H}, \mathrm{d}, \mathrm{CHN} H), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 6^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4}{ }^{\prime} \mathrm{H} 6^{\prime}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=$ $4.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 7}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 9}=0.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 9}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 33 | $\mathrm{CDCl}_{3}$ | $1.40\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.34\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.01\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{8}\right), 7.05\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{7}\right), 7.09\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right), 7.69$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 8.31\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{3}{ }^{\prime}\right), 8.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right), 8.52\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{6}\right), 8.53(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), 8.67\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 13.18$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{CHNH}), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H} 4^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H} 5^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 6 \mathrm{H} 7}=6.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 8}=1.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 8}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz} . \mathrm{OH}$ exchanged. |
| 34 | $\mathrm{CDCl}_{3}$ | $\left.1.40\left(3 \mathrm{H}, \mathrm{t}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.34\left(2 \mathrm{H}, \mathrm{q}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.10\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{5}\right)^{\prime}\right), 7.46\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{8}\right), 7.58\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{9}\right), 7.70$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{4}{ }^{\prime}\right), 8.31\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{3}{ }^{\prime}\right), 8.38\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right), 8.54(1 \mathrm{H}, \mathrm{d}, \mathrm{C} H \mathrm{NH}), 8.67\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}{ }^{\prime}\right), 9.01\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{6}\right), 13.24$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{CHN} H), \mathrm{J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=8.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 3^{\prime} \mathrm{H}^{\prime}}=1.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H}^{\prime}}=7.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 4^{\prime} \mathrm{H} 6^{\prime}}=2.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H} 6^{\prime}}=5.0 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 6 \mathrm{H} 8}=2.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 9}=0.8 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8 \mathrm{H} 9}=9.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CHNH}}=12.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{CH} 2 \mathrm{CH} 3}=7.1 \mathrm{~Hz}$. |
| 37 | $\mathrm{CDCl}_{3}$ | $\left.\left.3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 7.39\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{6}{ }^{\prime}\right), 7.58\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{7}\right)^{\prime}\right), 7.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}_{5}\right)^{\prime}\right), 8.29\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{5}\right), 8.38\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right)$, $\mathrm{J}_{\mathrm{H} 2 \mathrm{H} 5}=1.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 5^{\prime} \mathrm{H}^{\prime}}=1.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}^{\prime} \mathrm{H} 6^{\prime}}=\mathrm{J}_{\mathrm{H} 6^{\prime} \mathrm{H}^{\prime}}=8.0 \mathrm{~Hz}$. |
| 38 | $\mathrm{CDCl}_{3}$ | $2.53\left(3 \mathrm{H}, \mathrm{d}, 5{ }^{\prime}-\mathrm{Me}\right), 3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}), 6.23\left(1 \mathrm{H}, \mathrm{q}, \mathrm{H}_{4}{ }^{\prime}\right), 8.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{5}\right), 8.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right), \mathrm{J}_{\mathrm{H} 2 \mathrm{H} 5}=1.4 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 4^{\prime} 5-\mathrm{Me}}=0.9 \mathrm{~Hz}$. |

Methyl 2-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyll]amino-3-(3-indolyl)propenoate (16).
This compound was prepared from compound $\mathbf{3}$ ( 0.5 mmole, 160 mg ) and indole ( 7 ) ( $0.5 \mathrm{mmole}, 59 \mathrm{mg}$ ) by method A, 6 days.

1-Cyano-3-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-4H-quinolizin-4-one (17).

To compound 3 ( $0.5 \mathrm{mmole}, 160 \mathrm{mg}$ ) 2-pyridinylacetonitrile (8) $(0.5 \mathrm{mmole}, 59 \mathrm{mg})$ and acetic acid ( 2 ml ) were added and stirred at $80^{\circ} \mathrm{C}$ for 2.5 hours (method A) or at room temperature for 4 days (method B). The volatile compounds were evaporated in vacuo, ethanol ( 3 ml ) was added, the precipitate was collected by filtration and washed with ethanol.

## Preparation of Pyranones 18-22, 24.

Method A.
To compound $\mathbf{3}$ ( 0.5 mmole ) the corresponding $C$-nucleophilic compounds $\mathbf{9}, 10(0.5 \mathrm{mmole})$ and acetic acid $(2 \mathrm{ml})$ were added and stirred at room temperature from 5 hours to 5 days. The volatile compounds were evaporated in vacuo, ethanol ( 3 ml ) was added and the precipitate was collected by filtration.

## Method B.

To compound $\mathbf{3}$ ( 0.5 mmole ) the corresponding $C$-nucleophilic compounds $9-12(0.5 \mathrm{mmole})$ and acetic acid $(2 \mathrm{ml})$ were added and the reaction mixture was stirred at $80-100^{\circ} \mathrm{C}$ for $1.5-4$ hours. The volatile compounds were evaporated in vacuo, ethanol ( 3 ml ) was added and the precipitate was collected by filtration.

Method C.
To compound $\mathbf{4}$ ( 0.5 mmole) the corresponding $C$-nucleophilic compounds $\mathbf{9 - 1 2}$ ( 0.5 mmole ) and acetic acid ( 2 ml ) were added and refluxed for 5 hours. The volatile compounds were evaporated in vacuo, ethanol ( 3 ml ) was added and the precipitate was collected by filtration.

3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-5,6,7,8-tetrahydro- $2 H, 5 H$-benzo $b$ b]pyran-2,5-dione (18).
This compound was prepared from compound 3 ( 0.5 mmole, 160 mg ) and cyclohexane-1,3-dione (9) ( $0.5 \mathrm{mmole}, 56 \mathrm{mg}$ ) by
method A, 5 hours, and by method $\mathrm{B}, 110^{\circ} \mathrm{C}, 2$ hours, and from compound $\mathbf{4}$ ( $0.5 \mathrm{mmole}, 167 \mathrm{mg}$ ) and cyclohexane-1,3-dione (9) ( $0.5 \mathrm{mmole}, 56 \mathrm{mg}$ ) by method C, 5 hours.

3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-7,7-dimethyl-5,6,7,8-tetrahydro-2H,5H-benzo[b]pyran-2,5-dione (19).

This compound was prepared from compound $\mathbf{3}$ ( 0.5 mmole , 160 mg ) and 5,5-dimethylcyclohexane-1,3-dione (10) ( 0.5 mmole, 70 mg ) by method A, 5 days, and by method B, $80^{\circ} \mathrm{C}, 4$ hours, and from compound $4(0.5 \mathrm{mmole}, 167 \mathrm{mg})$ and $5,5-$ dimethylcyclohexane-1,3-dione (10) ( $0.5 \mathrm{mmole}, 70 \mathrm{mg}$ ) by method C, 5 hours.

3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-7-methyl$2 H, 5 H$-pyrano[4,3-b]pyran-2,5-dione (20).

This compound was prepared from compound $\mathbf{3}$ ( 0.5 mmole, 160 mg ) and 4-hydroxy-6-methyl-2H-pyran-2-one (11) ( 0.5 mmole, 63 mg ) by method $\mathrm{B}, 80^{\circ} \mathrm{C}, 4$ hours, and from compound $4(0.5 \mathrm{mmole}, 167 \mathrm{mg})$ and 4-hydroxy-6-methyl-2 H -pyran-2-one (11) ( $0.5 \mathrm{mmole}, 63 \mathrm{mg}$ ) by method C, 5 hours.

3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-2H,5H-pyrano[3,2-c]benzo[b]pyran-2,5-dione (21).

This compound was prepared from compound $\mathbf{3}$ ( 0.5 mmole, 160 mg ) and 4-hydroxy-2H-benzo[b]pyran-2-one (12) ( 0.5 mmole, 81 mg ) by method $\mathrm{B}, 110^{\circ} \mathrm{C}, 1.5$ hours, and from compound $4(0.5 \mathrm{mmole}, 167 \mathrm{mg})$ and 4-hydroxy- 2 H -benzo[b]pyran2 -one (12) ( $0.5 \mathrm{mmole}, 81 \mathrm{mg}$ ) by method C, 5 hours.

3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-5-hydra-zono-5,6,7,8-tetrahydro-2H-1-benzopy-ran-2-one (22).

To compound $\mathbf{1 8}(0.28 \mathrm{mmole}, 100 \mathrm{mg}) 4 \mathrm{~mL} 0.5 \mathrm{M}$ solution of hydrazine hydrate in ethanol was added and the mixture was refluxed for 1 hour. After cooling, the precipitate that formed was collected by filtration and washed with ethanol. The filtrate was left in the refrigirator for one week. The precipitate, 1-amino-3-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-5-hydrazono-5,6,7,8-tetrahydro-quinolin-2(1H)-one (23), which was formed, was collected by filtration and washed with ethanol.

3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-5-hydrazono-7,7-dimethyl-5,6,7,8-tetrahydro-2H-1-benzopyran-2-one (24).

To compound $\mathbf{1 9}(0.44 \mathrm{mmole}, 168 \mathrm{mg}) 4 \mathrm{~mL} 0.5 \mathrm{M}$ solution of hydrazine hydrate in ethanol was added and the mixture was refluxed for 1 hour. After cooling, the precipitate that formed was collected by filtration and washed with ethanol.

General Procedures for the Preparation of Pyrido[1,2-a]pyrim-idin-4-ones 31-34.

Method A.
Methyl 2-[2-ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-3-(heteroaryl)amino-propenoates $\mathbf{2 5}$ or $\mathbf{2 6}$ were dissolved in acetic acid ( $3-4 \mathrm{~mL} / 1 \mathrm{mmole}$ of starting compound) and the reaction mixtures were refluxed for 2.5-4 hours. The volatile compounds were evaporated in vacuo, ether ( 3 ml ) was added, the precipitate was collected by filtration and washed with ether.
Method B.
To compound $\mathbf{3}$ ( 0.5 mmole ) the corresponding heteroarylamines 27, $29(0.5 \mathrm{mmole})$ and acetic acid ( 2 ml ) were added and stirred at $60-80^{\circ} \mathrm{C}$ for 9 hours. The volatile compounds were evaporated in vacuo, ethanol ( 3 ml ) was added, the precipitate was collected by filtration and washed with ethanol.

Method C.
To compounds $\mathbf{3}$ or $\mathbf{4}$ ( 0.5 mmole ) the corresponding heteroarylamines 28-30 ( 0.5 mmole ) and acetic acid ( 2 ml ) were added and the reaxtion mixture was refluxed for 1-1.5 hour. The volatile compounds were evaporated in vacuo, ethanol ( 3 ml ) was added, the precipitate was collected by filtration and washed with ethanol.
3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-4 H -pyrido-[1,2-a]pyrimidin-4-one (31).

This compound was prepared from compound 3 ( 0.5 mmole, 160 mg ) and 2-aminopyridine (27) ( $47 \mathrm{mg}, 0.5 \mathrm{mmole}$ ) by method B, 9 hours.

3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-8-methyl$4 H$-pyrido [1,2- $a$ ]pyrimidin-4-one (32).

This compound was prepared from compound 25 (0.05 mmole, 20 mg ) by method A, 4 hours, and from compound 4 ( 0.5 mmole, 167 mg ) and 2-amino-4-methylpyridine ( $\mathbf{2 8}$ ) ( 0.5 mmole, 54 mg ) by method C, 1.5 hours. Compound $\mathbf{3 2}$ was also prepared from compound 3 ( $0.5 \mathrm{mmole}, 160 \mathrm{mg}$ ) and 2-amino-4methylpyridine (28) ( $0.5 \mathrm{mmole}, 54 \mathrm{mg}$ ). The reaction mixture was stirred at room temperature for 2 hours and afterwards at 110 ${ }^{\circ} \mathrm{C}$ for 8 hours. The volatile compounds were evaporated in vacuo, ethanol ( 3 ml ) was added, the precipitate was collected by filtration and washed with ethanol.

3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-9-hydroxy$4 H$-pyrido $[1,2-a]$ pyrimidin-4-one (33).

This compound was prepared from compound $\mathbf{3}$ ( 0.5 mmole, 160 mg ) and 2-amino-3-hydroxypyridine (29) ( 0.5 mmole , 55 mg ) by method B, 9 hours, and from compound 4 ( 0.5 mmole, 167 mg ) and 2-amino-3-hydroxypyridine (29) ( 0.5 mmole , 55 mg ) by method C, 1 hour.
3-[2-Ethoxycarbonyl-2-(2-pyridinyl)ethenyl]amino-7-chloro$4 H$-pyrido 1,2 - $a$ ]pyrimidin-4-one (34).

This compound was prepared from compound 26 ( 0.5 mmole , 201 mg ) by method A, 2.5 hours, from compound 3 ( 0.5 mmole, 160 mg ) and 2-amino-5-chloropyridine (30) ( $0.5 \mathrm{mmole}, 64 \mathrm{mg}$ ) by method C, 1 hour, and from compound $4(0.5 \mathrm{mmole}, 167 \mathrm{mg})$ and 2 -amino- 5 -chloropyridine ( $\mathbf{3 0}$ ) ( $0.5 \mathrm{mmole}, 64 \mathrm{mg}$ ) by method C, 1 hour.

General Procedure for the Preparation of N -Heteroaryl-1 H -imi-dazol-4-carboxylates 37, 38.

To compound $\mathbf{3}$ ( 0.5 mmole ) the corresponding heteroarylamines 35, 36 ( 0.5 mmole ) and acetic acid ( 2 ml ) were added and the reaxtion mixtures were refluxed for 1-1.5 hour. The volatile compounds were evaporated in vacuo, ethanol ( 3 ml ) was added, the precipitate was collected by filtration and washed with ethanol.

Methyl N -(4-chloro-2-benzothiazolyl)-1 H -imidazole-4-carboxylate (37).

This compound was prepared from compound $\mathbf{3}$ ( 0.5 mmole , 160 mg ) and 2-amino-4-chlorobenzothiazole (35) ( 0.5 mmole , 185 mg ), 1 hour.

Methyl N -(5-Methyl-3-isoxazolyl)- 1 H -imidazole-4-carboxylate (38).

This compound was prepared from compound $\mathbf{3}$ ( 0.5 mmole, 160 mg ) and 3-amino-5-methylisoxazole (36) ( 0.5 mmole , 50 mg ), 1.5 hours.

## 3-Amino-4H-pyrido[1,2-a]pyrimidin-4-one (39).

To 3-[2-Ethoxycarbonyl-2-(2-pyridinyl)-ethenyl]amino-4H-pyrido[1,2-a]pyrimidin-4-one (31) ( $0.2 \mathrm{mmole}, 67 \mathrm{mg}$ ) 0.5 M solution of hydrazine hydrate in ethanol ( 2 mL ) was added and the mixture was refluxed for 5.5 hours. The volatile compounds were evaporated in vacuo, ethanol ( 3 mL ) was added, the precipitate was collected by filtration and washed with ethanol in $67.1 \%$ yield, $\mathrm{mp} 177-178{ }^{\circ} \mathrm{C}$ (from ethanol), lit [13] mp 178-179 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta 4.04\left(2 \mathrm{H}\right.$, br.s, $\left.\mathrm{NH}_{2}\right), 6.99\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{7}\right)$, $7.38\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{8}\right), 7.52\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{H}_{9}\right), 8.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right), 8.88$ $\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{H}_{6}\right), \mathrm{J}_{\mathrm{H} 6 \mathrm{H} 7}=7.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 8}=1.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 6 \mathrm{H} 9}=0.9 \mathrm{~Hz}$, $\mathrm{J}_{\mathrm{H} 7 \mathrm{H} 8}=6.5 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 7 \mathrm{H} 9}=1.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H} 8 \mathrm{H} 9}=9.1 \mathrm{~Hz}$.

## Acknowledgment.

The financial support by the Ministry of Science and Technology of Slovenia is gratefully acknowledged.

## REFERENCES AND NOTES

[1] W. Flitsch, "Bicyclic 5-6 Systems with One Ring Junction Nitrogen Atom: No Extra Heteroatom" in "Comprehensive Heterocyclic Chemistry II", A. R. Katritzky, C. W. Rees, E. F. V. Scriven, eds., Vol. 8, G. Jones, ed., Elsevier Science Ltd., Oxford 1996, pp. 237-248.
[2] C. Avendaño and J. C. Menéndez, "Bicyclic 6-6 Systems with One Ring Junction Nitrogen Atom: No Extra Heteroatom" in "Comprehensive Heterocyclic Chemistry II", A. R. Katritzky, C. W. Rees, E. F. V. Scriven, eds., Vol. 8, G. Jones, ed., Elsevier Science Ltd., Oxford 1996, pp. 507-562.
[3] I. Hermecz, L. Vasvári-Debreczy, and P. Mátyus "Bicyclic 6-6 Systems with One Ring Junction Nitrogen Atom: One Extra Heteroatom 1:0" in "Comprehensive Heterocyclic Chemistry II", A. R. Katritzky, C. W. Rees, E. F. V. Scriven, eds., Vol. 8, G. Jones, ed.,

Elsevier Science Ltd., Oxford 1996, pp. 563-595.
[4] S. P. Stanforth, "Bicyclic 6-6 Systems: Two Heteroatoms 1:1" in "Comprehensive Heterocyclic Chemistry II", A. R. Katritzky, C. W. Rees, E. F. V. Scriven, eds., Vol. 7, C. A. Ramsden, ed., Elsevier Science Ltd., Oxford 1996, pp. 527-559.
[5] G. R. Geen, J. M. Evans, and A. K. Vong, "Pyrans and their Benzo Derivatives: Applications" in "Comprehensive Heterocyclic Chemistry II", A. R. Katritzky, C. W. Rees, E. F. V. Scriven, eds., Vol. 5, A. McKillop, ed., Elsevier Science Ltd., Oxford 1996, pp. 469-500.
[6] For recent reviews see: [a] B. Stanovnik and J. Svete, Synlett, 2000, 1077; [b] B. Stanovnik, J. Heterocyclic Chem., 36, 1581 (1999).
[7] L. Selič, R. Jakše, K. Lampič, L. Golič, S. Golič Grdadolnik, and B. Stanovnik, Helv. Chim. Acta, 83, 2802 (2000).
[8] R. Toplak, J. Svete, B. Stanovnik, and S. Golič Grdadolnik, J. Heterocyclic Chem., 36, 225 (1999).
[9] R. Toplak, J. Svete, S. Golič-Grdadolnik, and B. Stanovnik, Collect. Czech. Chem. Commun., 64, 177 (1999).
[10] S. Rečnik, R. Toplak, J. Svete, L. Pizzioli, and B. Stanovnik, J. Heterocyclic Chem., 37, 783 (2000).
[11] L. Jukić, S. Golič Grdadolnik, J. Svete, and B. Stanovnik,
J. Heterocyclic Chem., (preceeding paper), submited for publication.
[12] L. Selič and B. Stanovnik, J. Heterocyclic Chem., 35, 1527 (1998).
[13] J. Smodiš, B. Stanovnik, and M. Tišler, J. Heterocyclic Chem., 31, 125 (1994).
[14] A. Pollak, B. Stanovnik, and M. Tišler, J. Org. Chem., 36, 2457 (1975).
[15] S. Rečnik, J. Svete, A. Meden, and B. Stanovnik, Heterocycles, 53, 1793 (2000).
[16] L. Jukić, U. Bratušek, M. Škof, J. Svete, and B. Stanovnik, Chemistry of Heterocyclic Compounds (Khim. Geterotsikl. Soed.), 1510 (1996).

